Preprint
Review

Storage, Indexing, Query Processing, and Benchmarking in Centralized and Distributed RDF Engines: A Survey

Altmetrics

Downloads

2271

Views

978

Comments

1

Submitted:

30 May 2020

Posted:

31 May 2020

Read the latest preprint version here

Alerts
Abstract
The recent advancements of the Semantic Web and Linked Data have changed the working of the traditional web. There is a huge adoption of the Resource Description Framework (RDF) format for saving of web-based data. This massive adoption has paved the way for the development of various centralized and distributed RDF processing engines. These engines employ different mechanisms to implement key components of the query processing engines such as data storage, indexing, language support, and query execution. All these components govern how queries are executed and can have a substantial effect on the query runtime. For example, the storage of RDF data in various ways significantly affects the data storage space required and the query runtime performance. The type of indexing approach used in RDF engines is key for fast data lookup. The type of the underlying querying language (e.g., SPARQL or SQL) used for query execution is a key optimization component of the RDF storage solutions. Finally, query execution involving different join orders significantly affects the query response time. This paper provides a comprehensive review of centralized and distributed RDF engines in terms of storage, indexing, language support, and query execution.
Keywords: 
Subject: Computer Science and Mathematics  -   Information Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated