The author's method of oligomer sums for analysis of oligomer compositions of eukaryotic and prokaryotic genomes is described. The use of this method revealed the existence of general rules for cooperative oligomeric organization of a wide list of genomes. These rules are called hyperbolic because they are associated with hyperbolic sequences including the harmonic progression 1, 1/2, 1/3, .., 1/n. These rules are demonstrated by examples of quantitative analysis of many genomes from the human genome to the genomes of archaea and bacteria. The hyperbolic (harmonic) rules, speaking about the existence of algebraic invariants in full genomic sequences, are considered as candidates for the role of universal rules for cooperative organization of genomes. The described phenomenological results were obtained as consequences of the previously published author's quantum-information model of long DNA sequences. The oligomer sums method was also applied to the analysis of long genes and viruses including the COVID-19 virus; this revealed, in characteristics of many of them, the phenomenon of rhythmically repeating deviations from model hyperbolic sequences; these deviations are associated with DNA triplets and should be systematically analyzed for a deeper understanding the genetic coding system. The topics of the algebraic harmony in living bodies and of the quantum-information approach in biology are discussed.
Keywords:
Subject: Biology and Life Sciences - Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.