Preprint
Article

Charge Conjugation Symmetry in the Finite Basis Approximation of the Dirac Equation

Altmetrics

Downloads

190

Views

261

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

30 May 2020

Posted:

31 May 2020

You are already at the latest version

Alerts
Abstract
4-component relativistic atomic and molecular calculations are typically performed within the no-pair approximation where negative-energy solutions are discarded, hence the symmetry between electronic and positronic solutions is not considered. These states are however needed in QED calculations, where furthermore charge conjugation symmetry becomes an issue. In this work we shall discuss the realization of charge conjugation symmetry of the Dirac equation in a central field within the finite basis approximation. Three schemes for basis set construction are considered: restricted, inverse and dual kinetic balance. We find that charge conjugation symmetry can be realized within the restricted and inverse kinetic balance prescriptions, but only with a special form of basis functions that does not obey the right boundary conditions of the radial wavefunctions. The dual kinetic balance prescription is on the other hand compatible with charge conjugation symmetry without restricting the form of the radial basis functions. However, since charge conjugation relates solutions of opposite value of the quantum number κ, this requires the use of basis sets chosen according to total angular momentum j rather than orbital angular momentum ` . As a special case, we consider the free-particle Dirac equation, where the solutions of opposite sign of energy are related by charge conjugation symmetry. We note that there is additional symmetry in those solutions of the same value of κ come in pairs of opposite energy.
Keywords: 
Subject: Physical Sciences  -   Atomic and Molecular Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated