Preprint
Article

Multiplicative Error Modeling Approach for Time Series Forecasting

This version is not peer-reviewed.

Submitted:

31 May 2020

Posted:

31 May 2020

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Real-world time series data sets contain a combination of linear and nonlinear patterns, making the time series forecasting problem more challenging. In this paper, a new hybrid methodology is introduced for forecasting univariate time series data sets using a multiplicative error modeling approach. An autoregressive integrated moving average (ARIMA) model is combined with an autoregressive neural network (ARNN) for improving the predictions of individual forecast models. The proposed multiplicative ARIMA-ARNN model glorifies the chances of capturing the different combinations of linear and nonlinear patterns in time series. The model shows outstanding performance on six standard time-series data sets compared to other widely used single and hybrid forecasting models.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

1019

Views

415

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated