Preprint
Article

Vibration Diagnosis of Sand Units in Stone Crusher Plant On-site Field Test

Altmetrics

Downloads

561

Views

168

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

01 June 2020

Posted:

02 June 2020

You are already at the latest version

Alerts
Abstract
Due to limitation of natural sand from rivers and seas, artificial sand production from large stones or rocks is being increased. However, this sand manufacturing process is dangerous and causes several social problems such as high level of unwanted vibrations or noises. This study investigates vibration characteristics of sand and screen units in artificial sand production plant whose actuating operation is multiple with several different exciting frequencies. As a first step, vibration levels are measured at the sand and screen unit positions using accelerometers in time and frequency domains. The measurement is carried out at two different conditions: activating sand unit only and operating entire facilities such as stone crusher. Vibration signals acquired from several locations of the sand and screen units of the plant are collected and analyzed from waveforms and spectrums of the signals. It is identified that the vibration acceleration level of the screen unit is higher than that of the sand unit. In addition, it is found from the acceleration signals measured at plant office and shipping control center those places are far away from the plant location that the beating phenomenon is occurred by close driving frequencies for several sand units. In this work, the vibration caused from the beating is significantly reduced by adjusting the driving frequencies for the sand units so that they are sufficiently scattered to avoid the beating.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated