A peer-reviewed article of this preprint also exists.
Abstract
Nonwoven fabrics have been widely used in textile manufacturing industry as a sheet or web structure because of soft, water-repellent, recycle, ecological and resilient functions. Ultrasonic welding method has been applied for bonding nonwoven fabrics due to clean, fast and reliable approach. In this work, the ultrasonic stepped horn is designed to generate uniform amplitudes on the working surface by using finite element analysis (FEA) simulation. Chromium carbon steels are utilized to produce ultrasonic horns due to high wear resistant and hardness. Isotactic polypropylene nonwoven fabrics fabricated by spunbond process were bonded by continuous ultrasonic sewing machine. Ultrasonic horn with 70 mm in diameter working at 20 kHz, polypropylene (PP) nonwoven density of 80 gsm and various design of welding joints were applied. A typical image in the case of number one was investigated by the scanning electron microscope (SEM) images of inter-facial micro-structure. However, welding joints of totally eight roller patterns was test the tensile strength of the ultrasonic welding joints on PP nonwoven fabrics. The tensile strength of the welding joints is proportional to the area ratio between the welding area and cycling area. The results showed that the melted zone without welding defects such as crack or blowhole can be seen. Furthermore, the tensile strength of welding joints in eight cases of roller patterns (No.1-No.8) was described in details. The ultrasonic welding joints with brick structures give higher tensile strength while the solid line in the pattern gave less strength.
Keywords:
Subject:
Engineering - Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.