Abstract
We provide an axiomatic base for the set of natural numbers, that has been proposed as a canonical construction, and use this definition of $\mathbb N$ to find several results on finite group theory. Every finite group $G$, is well represented with a natural number $N_G$; if $N_G=N_H$ then $H,G$ are in the same isomorphism class. We have a linear order, on the quotient space of isomorphism classes of finite groups, that is well behaved with respect to cardinality. If $H,G$ are two finite groups such that $|H|=m<n=|G|$, then $H<\mathbb Z_n\leq G\leq\mathbb Z_{p_1}^{n_1}\oplus\mathbb Z_{p_2}^{n_2}\oplus\cdots\oplus\mathbb Z_{p_k}^{n_k}$ where $n=p_1^{n_1}p_2^{n_2}\cdots p_{k}^{n_k}$ is the prime factorization of $n$. We find a canonical order for the objects of $G$ and define equivalent objects of $G$, thus finding the automorphisms of $G$. The Cayley table of $G$ takes canonical block form, and we are provided with a minimal set of independent equations that define the group. We show how to find all groups of order $n$, and order them. We give examples using all groups with order smaller than $10$, and we find the canonical block form of the symmetry group $\Delta_4$. In the next section, we extend our results to the infinite case, which defines a real number as an infinite set of natural numbers. A real function is a set of real numbers, and a sequence of real functions $f_1,f_2,\ldots$ is well represented by a set of real numbers, as well. In general, we represent mathematical objects using the smallest possible data-type. In the last section, mathematical objects are well assigned to tree structures. We conclude with brief comments on type theory and future work on computational aspects of these representations.