Preprint
Article

Energy Management of Community Microgrids Considering Uncertainty using Particle Swarm Optimisation

Altmetrics

Downloads

598

Views

317

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

15 June 2020

Posted:

16 June 2020

You are already at the latest version

Alerts
Abstract
Although energy management of a microgrid is generally performed using a day-ahead scheduling method, its effectiveness has been questioned by the research community due to the existence of high uncertainty in renewable power generation, power demand and electricity market. As a result, real-time energy management schemes are recently developed to minimise the operating cost of a microgrid while high uncertainty presents in the network. This paper develops modified particle swarm optimisation (MPSO) algorithms to solve optimisation problems of energy management schemes for a community microgrid and proposes a scheduling approach after taking into consideration high uncertainty to effectively minimise the operational cost of the microgrid. The optimisation problems are formulated for real-time and scheduling approaches, and solution methods are developed to solve the problems. It is observed that the scheduling program demonstrates superior performance in all the cases, including uncertainty in prediction, as compared to the other energy management approaches, although solutions have significant deviations due to prediction errors.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated