Preprint
Article

Anode Maturation Time for Attaining a Mature Anode Biofilm and Stable Cell Performance in a Single Chamber Microbial Fuel Cell with a Brush Anode

Altmetrics

Downloads

615

Views

390

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

15 June 2020

Posted:

17 June 2020

You are already at the latest version

Alerts
Abstract
To obtain an accurate and reproducible experimental results in microbial fuel cell (MFC), it is important to know ‘anode maturation biofilm’ to produce a stable and maximum performance. For this purpose, four single chamber MFCs were tested in this study. The linear sweep voltammetry (LSV) polarization tests illustrated that maximum power densities of three MFCs became stable after 9 weeks. Although there were variations afterwards, such variations were negligible. Average maximum power densities from the 9th to the 17th week were 2,990 mW/m2 (MFC-4), 2,983 mW/m2 (MFC-2), 2,368 mW/m2 (MFC-3) and 837 mW/m2 (MFC-1). Polarization resistance shows that MFC-1 had much larger anode resistance (36.6-85.4 Ω) than the other MFCs (1.7-11.6 Ω). Anodic cyclic voltammetry (CV) shows that current production increased over time and MFC-1 had much smaller current production (24.4 mA) than the other MFCs (31.0-34.9 mA) at 17th week. The increased current production indicates anode biofilm became more mature over time, but overall cell performance did not increased accordingly. Possibly due to the bad inoculation, MFC-1 showed the lowest performance. However, its performance was restored to the initial performance and anode resistance was reduced by 47% at 17th week. This study shows that the optimum anode maturation time is 9 weeks and that bioanode performance is a key factor for MFC performance. This study also shows than LSV polarization and CV tests are accurate and non-destructive measurement methods for diagnosing anode performance.
Keywords: 
Subject: Engineering  -   Energy and Fuel Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated