Preprint
Article

Astaxanthin Prevents Atrophy in Slow Fiber Muscles by Inhibiting Mitochondrial Reactive Oxygen Species Via a Mitochondria-Mediated Apoptosis Pathway

Altmetrics

Downloads

327

Views

273

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

17 June 2020

Posted:

17 June 2020

You are already at the latest version

Alerts
Abstract
Astaxanthin (AX) is a carotenoid that exerts potent antioxidant activity and acts in the lipid bilayer. This study aimed to investigate the effects of AX on muscle atrophy-mediated disturbance of mitochondria that have a lipid bilayer. Tail suspension was used to establish muscle- atrophied mouse models. AX diet fed to tail-suspension mice prevented loss of muscle weight and decreased myofiber size in the soleus muscle. Additionally, AX improved down-regulation of mitochondrial respiratory chain complexes II and III in the soleus muscle after tail suspension. To confirm the AX phenotype in the soleus muscle, we examined its effects on mitochondria using Sol8 myotubes derived from the soleus muscle. We found that AX was preferentially detected in the mitochondrial fraction; it significantly suppressed mitochondrial complex III-driven production of reactive oxygen species in Sol8 myotubes. Moreover, AX inhibited the activation of caspase 3 via inhibiting the release of cytochrome c into the cytosol in antimycin A-treated Sol8 myotubes. These results suggested that AX inhibited mitochondrial oxidative stress through a mitochondria-mediated apoptosis pathway and thus prevented muscle atrophy.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated