While there is overwhelming evidence for dark matter (DM) in galaxies and galaxy clusters, all searches for DM particles have so far proved negative. It is not even clear whether only one particle is involved or a combination or particles, their masses not precisely predicted. This non-detectability raises the possible relevance of modified gravity theories – MOND, MONG, etc. Here we consider a specific modification of Newtonian gravity (MONG) which involves gravitational self-energy, leading to modified equations whose solutions imply flat rotation curves and limitations of sizes of clusters. The results are consistent with current observations including that involving large spirals. This modification could also explain the current Hubble tension. We also consider effects of dark energy (DE) in terms of a cosmological constant.
Keywords:
Subject: Physical Sciences - Astronomy and Astrophysics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.