Preprint
Concept Paper

Automatic Ink Mismatch Detection in Hyper Spectral Images Using K-means Clustering

Altmetrics

Downloads

356

Views

217

Comments

0

Submitted:

27 June 2020

Posted:

28 June 2020

You are already at the latest version

Alerts
Abstract
Hyper spectral imaging (HSI) is a technique that is used to obtain the spectrum for each pixel in the image. It helps in finding objects and identifying materials etc. Such an identification is very difficult using other imaging techniques. It allows the researchers to investigate the documents without any physical contact. Nowadays detection of unequal Ink mismatch based on HSI has shown vast improvement in distinguishing the inks. Detection of unequal Ink mismatch is an unbalanced clustering problem. This paper used K-means Clustering for ink mismatch detection. K-means Clustering find same subgroups in the data based on Euclidean distance. This paper demonstrates performance in unequal Ink mismatch based on HSI.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated