Preprint
Article

Demographic Performance of Helicoverpa zea Populations on Dual and Triple-Gene Bt Cotton

Altmetrics

Downloads

302

Views

272

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

02 July 2020

Posted:

05 July 2020

You are already at the latest version

Alerts
Abstract
Insecticidal toxins from Bacillus thuringiensis (Bt) are valuable tools for pest management worldwide, contributing to the management of human disease insect vectors and phytophagous insect pests of agriculture and forestry. Here, we report the effects of dual and triple Bt toxins expressed in transgenic cotton cultivars on the fitness and demographic performance of Helicoverpa zea (Boddie), a noctuid pest known as cotton bollworm and corn earworm. Life-history traits were determined for individuals of three field populations from a region where H. zea overwintering is likely. Triple-gene Bt cotton cultivars expressing Cry and Vip3Aa toxins killed 100% of the larvae in all populations tested. In contrast, dual-gene Bt cotton expressing Cry1Ac+Cry1F and Cry1Ac+Cry2Ab2 allowed population growth with the intrinsic rate of population growth (rm) 38% lower than on non-Bt cotton. The insects feeding on Bt cotton plants expressing Cry1Ac+Cry2Ab2, Cry1Ac+Cry1F, or Cry1Ab+Cry2Ae exhibited reduced larval weight, survival rate, and increased development time. Additionally, fitness parameters varied significantly among the insect populations, even on non-Bt cotton plants, likely because of their different genetic background and/or previous Bt toxin exposure. This is the first report of the comparative fitness of H. zea field populations on dual-gene Bt cotton after the recent reports of field resistance to certain Bt toxins. These results document the population growth rates of H. zea from an agricultural landscape with 100% Bt cotton cultivars. Our results will help to refine models designed to predict resistance evolution and improve insect resistance management for Bt crops.
Keywords: 
Subject: Biology and Life Sciences  -   Agricultural Science and Agronomy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated