Preprint
Article

NTRU-Like Random Congruential Public-Key Cryptosystem for Wireless Sensor Networks

Altmetrics

Downloads

386

Views

225

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

03 July 2020

Posted:

05 July 2020

You are already at the latest version

Alerts
Abstract
Wireless Sensor Networks (WSN) are the core of Internet of Things and require cryptographic protection due to the increase number of attacks. Cryptographic methods for WSN should be fast and consume low power as these networks consist of battery-powered devices and constrained microcontrollers. NTRU, the fastest and secure public key cryptosystem, uses high degree polynomials, and is susceptible to the lattice basis reduction attack (LBRA). CPKC, proposed by NTRU authors, works on integers modulo $q$ and is easily attackable by LBRA since it uses small numbers for the sake of the correct decryption. Herein, RCPKC, a random congruential public key cryptosystem working on integers modulo $q$ is proposed, such that the norm of a two-dimensional vector formed by its private key is greater than $\sqrt{q}$. RCPKC works similar to NTRU, and it is a secure version of insecure CPKC. RCPKC specifies a range from which the random numbers shall be selected, and it provides correct decryption for valid users and incorrect decryption for an attacker using LBRA by Gaussian lattice reduction. Because of its resistance to LBRA, RCPKC is more secure. Simultaneously, due to the use of big numbers instead of high degree polynomials, RCPKC is about 24 (7) times faster in encryption (decryption) than NTRU. Also, RCPKC is more three times faster than the most effective known NTRU variant, BQTRU. Compared to NTRU, RCPKC reduces energy consumption at least seven times that allows increasing life-time of unattended WSN more than seven times.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Networks and Communications
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated