Preprint
Article

Low-order Spherical Harmonic HRTF Restoration using a Neural Network Approach

Altmetrics

Downloads

260

Views

188

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

08 July 2020

Posted:

10 July 2020

You are already at the latest version

Alerts
Abstract
Spherical harmonic (SH) interpolation is a commonly used method to spatially up-sample sparse Head Related Transfer Function (HRTF) datasets to denser HRTF datasets. However, depending on the number of sparse HRTF measurements and SH order, this process can introduce distortions in high frequency representation of the HRTFs. This paper investigates whether it is possible to restore some of the distorted high frequency HRTF components using machine learning algorithms. A combination of Convolutional Auto-Encoder (CAE) and Denoising Auto-Encoder (DAE) models is proposed to restore the high frequency distortion in SH interpolated HRTFs. Results are evaluated using both Perceptual Spectral Difference (PSD) and localisation prediction models, both of which demonstrate significant improvement after the restoration process.
Keywords: 
Subject: Engineering  -   Control and Systems Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated