Preprint
Article

Modelling of Fluid Flow and Residence Time Distribution in a Five-strand Tundish

Altmetrics

Downloads

836

Views

170

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

15 July 2020

Posted:

16 July 2020

You are already at the latest version

Alerts
Abstract
The quantified residence time distribution (RTD) provides a numerical characterization of mixing in the continue casting tundish, thus allowing the engineer to better understand the metallurgical performance of the reactor. This paper describes a computational fluid dynamic (CFD) modelling study for analyzing the flow pattern and the residence time distribution in a five-strand tundish. Two passive scalar transport equations are applied to separately calculate the E-curve and F-curve in the tundish. The numerical modelling results are compared to the water modelling results for the validation of the mathematical model. The volume fraction of different flow regions (plug, mixed and dead) and the intermixing time during the ladle changeover are calculated to study the effects of the flow control device (FCD) on the tundish performance. The result shows that a combination of the U-baffle with deflector holes and the turbulence inhibitor has three major effects on the flow characteristics in the tundish: i) reduce the extent of the dead volume; ii) evenly distribute the liquid streams to each strand and iii) shorten the intermixing time during the ladle changeover operation.
Keywords: 
Subject: Chemistry and Materials Science  -   Metals, Alloys and Metallurgy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated