A peer-reviewed article of this preprint also exists.
Abstract
Bacterial infections occur when wound healing fails to reach the final stage of healing, usually hindered by the presence of different pathogens. Different topical antimicrobial agents are used to inhibit bacterial growth due to antibiotic failure in reaching the infected site accompanied very often by an increased drug resistance and other side effects. In this review, we focus on antimicrobial peptides (AMPs), especially those with a high potential of efficacy against multidrug-resistant and biofilm-forming bacteria and fungi present in wound infections. Currently, different AMPs undergo preclinical and clinical phase to combat infection-related diseases. AMP dendrimers (AMPDs) have been mentioned as potent microbial agents. Various AMP delivery strategies, such as polymers, scaffolds, films and wound dressings, organic and inorganic nanoparticles, to combat infection and modulate the healing rate have been discussed as well. New technologies such as CRISPR-Cas are taken into consideration as potential future tools for AMP delivery in skin therapy.
Keywords:
Subject:
Biology and Life Sciences - Immunology and Microbiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.