Preprint
Article

Did a Complex Carbon Cycle Operate in the Inner Solar System?

Altmetrics

Downloads

223

Views

162

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

18 July 2020

Posted:

19 July 2020

You are already at the latest version

Alerts
Abstract
Solids in the interstellar medium consist of an intimate mixture of silicate and carbonaceous grains. Because 99% of silicates in meteorites were reprocessed at high temperatures in the inner regions of the Solar Nebula, we propose that similar levels of heating of carbonaceous materials in the oxygen-rich Solar Nebula would have converted nearly all carbon in dust and grain coatings to CO. We discuss catalytic experiments on a variety of grain surfaces that not only produce gas-phase species such as CH4, C2H6, C6H6, C6H5OH or CH3CN, but also produce carbonaceous solids and fibers that would be much more readily incorporated into growing planetesimals. CO and other more volatile products of these surface mediated reactions were likely transported outwards along with chondrule fragments and small Calcium Aluminum Inclusions (CAIs) to enhance the organic content in the outer regions of the nebula where comets formed. Carbonaceous fibers formed on the surfaces of refractory oxides may have significantly improved the aggregation efficiency of chondrules and CAIs. Carbonaceous fibers incorporated into chondritic parent bodies might have served as the carbon source for the generation of more complex organic species during thermal or hydrous metamorphic processes on the evolving asteroid.
Keywords: 
Subject: Physical Sciences  -   Astronomy and Astrophysics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated