Preprint
Review

Computational Methods for Predicting Functions at The mRNA Isoform Level

Altmetrics

Downloads

211

Views

266

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

13 July 2020

Posted:

20 July 2020

You are already at the latest version

Alerts
Abstract
Multiple mRNA isoforms of the same gene are produced via alternative splicing, a biological mechanism that regulates protein diversity while maintaining genome size. Alternatively spliced mRNA isoforms of the same gene may sometimes have very similar sequence, but they can have significantly diverse effects on cellular function and regulation. The products of alternative splicing have important and diverse functional roles, such as response to environmental stress, regulation of gene expression, human heritable and plant diseases. The mRNA isoforms of the same gene, such as the apoptosis associated CASP3 gene, can have dramatically different functions. The shorter mRNA isoform product CASP3-S inhibits apoptosis, while the longer CASP3-L mRNA isoform promotes apoptosis. Despite the functional importance of mRNA isoforms, very little has been done to annotate their functions. The recent years have however seen the development of several computational methods aimed at predicting mRNA isoform level biological functions. These methods use a wide array of proteo-genomic data to develop machine learning-based mRNA isoform function prediction tools. In this review, we discuss the computational methods developed for predicting the biological function at the individual mRNA isoform level.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated