Preprint
Article

Synthesis, Antimicrobial Study and Molecular Docking Simulation of 3,4-Dimethoxy-β-nitrostyrene Derivatives as Candidate of PTP1B Inhibitor

Altmetrics

Downloads

180

Views

130

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

19 July 2020

Posted:

20 July 2020

You are already at the latest version

Alerts
Abstract
A derivative series of 3,4-dimethoxy-β-nitrostyrene were synthesized and identified including new compound 6. The effect of antimicrobial activity of 3,4-alkyloxy modification of β-nitrostyrene was investigated. A molecular docking was also performed to obtain information about their interactions with Protein Tyrosine Phosphatase 1B (PTP1B). PTP1B containing cysteine 215 and arginine 221 as essential active residues plays a key role in signaling pathways that regulate various cell functions of microorganisms, which also act as negative regulator in signaling pathways of insulin that are involved in type 2 diabetes and other metabolic diseases. Compound 5 and 6 were the most potent as fragment of PTP1B inhibitor based on molecular docking, but compound 5 was more effective against Candida albicans. These compounds interact with serine 216 and arginine 221 residues. However, further research is needed to investigate their potential medicinal use.
Keywords: 
Subject: Chemistry and Materials Science  -   Medicinal Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated