Preprint
Article

Long-Term Effects of Elevated Co2 on the Population Dynamics of The Seagrass Cymodocea Nodosa: Evidence from Volcanic Seeps

Altmetrics

Downloads

341

Views

217

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

22 July 2020

Posted:

24 July 2020

You are already at the latest version

Alerts
Abstract
We used population reconstruction techniques to assess for the first time the population dynamics of a seagrass, Cymodocea nodosa, exposed to long-term elevated CO2 near three volcanic seeps and compare them with reference sites away from the seeps. Under high CO2, the density of shoots and of individuals (apical shoots), and the vertical and horizontal elongation and production rates, were higher. Nitrogen effects on rhizome elongation and production rates and on biomass, were stronger than CO2 as these were highest at the location where the availability of nitrogen was highest. At the seep where the availability of CO2 was highest and nitrogen lowest, density of shoots and individuals were highest, probably due to CO2 effects on shoot differentiation and induced reproductive output, respectively. In all three seeps there was higher short- and long-term recruitment and growth rates around zero, indicating that elevated CO2 increases the turnover of C. nodosa shoots.
Keywords: 
Subject: Biology and Life Sciences  -   Ecology, Evolution, Behavior and Systematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated