Preprint
Review

SARS-CoV-2 ORF8 and SARS-CoV ORF8ab: Genomic Divergence and Functional Convergence

Altmetrics

Downloads

589

Views

509

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

23 July 2020

Posted:

24 July 2020

You are already at the latest version

Alerts
Abstract
COVID-19 pandemic in first seven months has led to more than 15 million confirmed infected cases and 600,000 deaths. SARS-CoV-2, the causative agent for COVID-19 has proved a great challenge for its ability to spread in asymptomatic stages and a diverse disease spectrum it has generated. This has created a challenge of unimaginable magnitude not only affecting human health and life but also potentially generating a long-lasting socioeconomic impact. Both medical sciences and biomedical research have also been challenged consequently leading to a large number of clinical trials and vaccine initiatives. While known proteins of pathobiological importance are targets for these therapeutic approaches, it is imperative to explore other factors of viral significance. Accessory proteins are one such trait that have diverse roles in coronavirus pathobiology. Here we analyze certain genomic characteristics of SARS-CoV-2 accessory protein ORF8, predict upon its protein features and review current available literature regarding its function. We have also undertaken review of ORF8 homolog ORF8ab from SARS-CoV with a purpose of developing holistic understanding of these proteins for reason that coronaviruses have been infecting humans repeatedly and might continue to do so. Despite low nucleotide and protein identity and differentiating genome level characteristics, there appears to be significant structural integrity and functional proximity between these proteins pointing towards their high significance. There is further need for comprehensive genomics and structural-functional studies to lead towards definitive conclusions regarding their criticality and that can eventually define their relevance to therapeutics development.
Keywords: 
Subject: Biology and Life Sciences  -   Virology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated