Marine renewable energy technologies have a great potential in supplying clean electricity to millions of people across the globe, if technical and economic conditions are in right. So far, ocean energy projects are commonly started by SMEs or educational institutions with limited budgets. Therefore, any effort to reduce expenses is of great value. One of the areas involving substantial expenses are the inevitable seabed inspection prior to deployment of marine renewable energy device. Detailed seabed inspections can also reduce the risk of associated with deployment of structures on uneven seabed, especially marine renewable energy devices with gravity foundations. By reducing the costs and risks of such surveys prior and during the installation phases, the feasibility of marine renewable energy projects can be more favoured and competitive. In this perspective, this study proposes a cost and time effective technique for seabed surveys. The proposed technique involves the use of high precision and inexpensive sonar systems and underwater optical cameras integrated into a versatile and compact subsea monitoring platform. It also involves simple and practical data acquisition and processing protocols that do not requires hi expertise for operation. The results obtained showed that high resolution bathymetric maps and detailed seabed inspections imagery can be acquired. This study concludes that a simple and inexpensive subsea monitoring platform comprising a multibeam, dual beam and video cameras can be effective for high resolution seabed inspection and bathymetric measurements for marine energy applications.
Keywords:
Subject: Engineering - Marine Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.