Preprint
Article

Preparing for Sea-Level Rise through an Adaptive Managed Retreat of a Two-Waters Network

Altmetrics

Downloads

399

Views

303

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

25 July 2020

Posted:

26 July 2020

You are already at the latest version

Alerts
Abstract
Frequent flooding from sea-level rise (SLR) is one of the immediate climate change impacts affecting low-lying and exposed coastal communities. These communities rely upon the delivery of three-waters services for wastewater, stormwater and water supply. Due to ongoing SLR, managing these networks will increasingly be a challenge. This raises the issue of how local government can reconcile maintaining levels of service as the impacts of climate change and their uncertainties worsen over the coming decades (and beyond). Can they be adapted over time to retain levels of service or will they eventually require retreat and if so at what adaptation threshold? This paper explores managed retreat of two-waters infrastructure (wastewater and stormwater) as an adaptation option using a Dynamic Adaptive Pathway Planning (DAPP) approach. In the study, we use DAPP to frame the retreat of two-water networks, developing a combination of an area specific retreat strategy, pathway portfolios, retreat phases, land use change signaling and identify pathway conflicts and synergies. Repurposing retreated areas by utilizing Water Sensitive Urban Design (WSUD) options was found to extend retreat thresholds for adjacent areas. A systematic ’routine’ developed in this study provides a structured approach for managed retreat of two-water infrastructure with the aim to reduce future disruption from flooding, signal land use changes early and allow for gradual budget adjustments by the agencies to manage expenditure over time. This approach helps inform and improve the decision-making process for the agencies and the communities they serve, by providing a stepwise process that can be communicated spatially and visually, thereby making a retreat adaptation option more manageable.
Keywords: 
Subject: Engineering  -   Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated