Preprint
Article

One Shot Cluster Based Approach for the Detection of COVID-19 from Chest X-Ray Images

This version is not peer-reviewed.

Submitted:

26 July 2020

Posted:

27 July 2020

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Corona virus disease (COVID-19) has infected over more than 10 million people around the globe and killed at least 500K worldwide by the end of June 2020. As this disease continues to evolve and scientists and researchers around the world now trying to find out the way to combat this disease in most effective way. Chest X-rays are widely available modality for immediate care in diagnosing COVID-19. Precise detection and diagnosis of COVID-19 from these chest X-rays would be practical for the current situation. This paper proposes one shot cluster based approach for the accurate detection of COVID-19 chest x-rays. The main objective of one shot learning (OSL) is to mimic the way humans learn in order to make classification or prediction on a wide range of similar but novel problems. The core constraint of this type of task is that the algorithm should decide on the class of a test instance after seeing just one test example. For this purpose we have experimented with widely known Generalized Regression and Probabilistic Neural Networks. Experiments conducted with publicly available chest x-ray images demonstrate that the method can detect COVID-19 accurately with high precision. The obtained results have outperformed many of the convolutional neural network based existing methods proposed in the literature.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

438

Views

1036

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated