Preprint
Article

Method for a Multi-vehicle, Simulation-based Life Cycle Assessment and Application to Berlin's Motorized Individual Transport

Altmetrics

Downloads

242

Views

194

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

27 July 2020

Posted:

28 July 2020

You are already at the latest version

Alerts
Abstract
The transport sector in Germany causes one-quarter of energy-related greenhouse gas emissions. One potential solution to reduce these emissions is the use of battery electric vehicles. Although a number of life cycle assessments have been conducted for these vehicles, the influence of a transport system wide transition has not been researched sufficiently. Therefore, we developed a method which combines life cycle assessment with an agent-based transport simulation and synthetic electric, diesel and gasoline powered vehicle models. We use the transport simulation to obtain the number of vehicles, their lifetime mileage and road-specific consumption. Subsequently we analyze the product systems’ vehicle production, use phase and End-of-Life. The results are scaled depending on the covered distance, the vehicle weight and the consumption for the whole life cycle. The results indicate that the sole transition of drive trains is insufficient to significantly lower the greenhouse gas emissions. However, sensitivity analyses demonstrate that there is a considerable potential to reduce greenhouse gas emissions with higher shares of renewable energies, a different vehicle distribution and a higher lifetime mileage. The method facilitates the assessment of the ecological impacts of the complete car based transportation in urban agglomerations and is able to analyze different transport sectors.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated