The effects of the surface waves generated by the wind have a significant effect on the currents. A wave current coupled model plays an important role in the design of offshore structures. The interaction between fluids such as incompressible ocean waves and current and offshore structures is significant with many real-time applications in offshore engineering. These coupled models can be applied to Offshore Floating Production Operating and offloading (FPSO), Wind or current turbines and offshore pipelines. The complex issues related to the design are analyzed by using Computational Fluid Dynamics, which requires an investigation of the multiphase flow between wave and current and the structure which is considered restrictive due to the computational cost. If viscous effects are neglected then the single-phase flow models have been recommended, where wave-current interaction have been modelled successfully. Models have been developed where velocities and pressure are computed and the results can be verified with the experimental results available in the literature. In this study the existing numerical methods, mesh types are discussed along with their coupling methods. Here single-phase and multiphase models with small and medium movement are reviewed and their applications are highlighted.
Keywords:
Subject: Engineering - Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.