Preprint
Article

Monte Carlo Simulation of the UK’s First EPR Nuclear Reactor Startup Core Using Serpent

Altmetrics

Downloads

875

Views

407

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

03 August 2020

Posted:

05 August 2020

You are already at the latest version

Alerts
Abstract
Computationally modelling a nuclear reactor startup core for a benchmark against the existing models is highly desirable for an independent assessment informing nuclear engineers and energy policymakers. This work presents a startup core model of the UK’s first Evolutionary Pressurised Water Reactor (EPR) based on Monte Carlo simulations of particle collisions using Serpent 2, a continuous-energy Monte Carlo reactor physics burnup code. Coupling between neutronics and thermal-hydraulic conditions with the fuel depletion is incorporated into the multi-dimensional branches, obtaining the thermal flux and fission rate (power) distributions radially and axially from the three dimensional (3D) single assembly level to a 3D full core. Shannon entropy is employed to characterise the convergence of the fission source distribution, with 3 billion neutron histories tracked by parallel computing. Source biasing is applied for the variance reduction. Benchmarking the proposed Monte Carlo 3D full-core model against the traditional deterministic transport computation suite used by the UK Office for Nuclear Regulation (ONR), a reasonably good agreement within statistics is demonstrated for the safety-related reactivity coefficients, which creates trust in the EPR safety report.
Keywords: 
Subject: Engineering  -   Energy and Fuel Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated