Henry Vidal first introduced the concept of using strips, grids, and sheets for reinforcing soil masses. Since then, a large variety of materials such as steel bars, tire shreds, polypropylene, polyester, glass fibers, coir, jute fibers etc. have been widely added to the soil mass randomly or in a regular, oriented manner. In this investigation, a new concept of multi-oriented plastic reinforcement (hexa-pods), is discussed. A systematic and comprehensive laboratory tests were conducted on unreinforced and reinforced soil samples. Laboratory tests such as direct shear teat and California bearing ratio (CBR) test were analyzed on soil samples consisting of only soil samples, soil sample with random inclusion of hexapods and soil samples with layered inclusion of hexapods. From the results obtained through direct shear test it could be observed that cohesion value of both the soil sample has increased and the angle of internal friction has been decreased after reinforcing it with inclusions in both randomly and layered conditions. CBR test indicates that for same amount of compactive effort, both random and layered inclusions of hexapods show improvement in strength and stiffness. Random inclusions of hexapods give better resistance to penetration as compared to layered inclusions. The hexa-pods also changed the brittle behavior of unreinforced sand samples to ductile ones.
Keywords:
Subject:
Environmental and Earth Sciences - Soil Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.