Feature selection is a crucial step to overcome the curse of dimensionality problem in data mining. This work proposes Recursive k-means Silhouette Elimination (RkSE) as a new unsupervised feature selection algorithm to reduce dimensionality in univariate and multivariate time-series datasets. Where k-means clustering is applied recursively to select the cluster representative features, following a unique application of silhouette measure for each cluster and a user-defined threshold as the feature selection or elimination criteria. The proposed method is evaluated on a hydraulic test rig, multi sensor readings in two different fashions: (1) Reduce the dimensionality in a multivariate classification problem using various classifiers of different functionalities. (2) Classification of univariate data in a sliding window scenario, where RkSE is used as a window compression method, to reduce the window dimensionality by selecting the best time points in a sliding window. Moreover, the results are validated using 10-fold cross validation technique. As well as, compared to the results when the classification is pulled directly with no feature selection applied. Additionally, a new taxonomy for k-means based feature selection methods is proposed. The experimental results and observations in the two comprehensive experiments demonstrated in this work reveal the capabilities and accuracy of the proposed method.