Preprint
Article

Off-Resonant Absorption Enhancement in Single Nanowires via Graded Dual-Shell Design

Altmetrics

Downloads

301

Views

291

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

08 August 2020

Posted:

11 August 2020

Read the latest preprint version here

Alerts
Abstract
Single nanowires (NWs) are of great importance for various optoelectronic applications, especially solar cells serving as powering nanoscale devices. However, weak off-resonant absorption can limit its light-harvesting capability. Here, we propose a single NW coated with the graded-index dual shells (DSNW). We demonstrate that with the proper thickness and refractive index of the inner shell, the DSNW exhibits significantly enhanced light trapping compared with the bare NW (BNW), and the NW only coated with the outer shell (OSNW) and inner shell (ISNW), which can be attributed to the optimal off-resonant absorption mode profiles due to the improved coupling between the reemitted light of the leak mode resonances of the Si core and the nanofocusing light from the dual shells with the graded refractive index. We found that the light absorption can be adjusted via tuning the thickness and refractive index of the inner shell, the photocurrent density is significantly enhanced by 134% (56%, 12%) in comparison with that of the BNW (OSNW, ISNW). This work advances our understanding of how to improve off-resonant absorption by applying graded dual shells and provides a new choice for designing high-efficiency single NW photovoltaic devices.
Keywords: 
Subject: Chemistry and Materials Science  -   Nanotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated