Preprint
Article

An Investigation of Three-finger Toxin – nAChR Interactions through Rosetta Protein Docking

Altmetrics

Downloads

161

Views

179

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

11 August 2020

Posted:

14 August 2020

You are already at the latest version

Alerts
Abstract
Three finger toxins (3FTX) are a group of peptides that affect multiple receptor types. One group of proteins affected by 3FTX are nicotinic acetylcholine receptors (nAChR). Structural information on how neurotoxins interact with nAChR is limited and are confined to a small group of neurotoxins. Therefore, in silico methods are valuable in understanding the interactions between 3FTX and different nAChR subtypes, but there are no established protocols to model 3FTX – nAChR interactions. We developed a homology modeling and protein docking protocol to address this issue and tested its success on three different systems. First, neurotoxin peptides co-crystallized with acetylcholine binding protein (AChBP) were re-docked to assess whether Rosetta protein – protein docking can reproduce the native poses. Second, experimental data on peptide binding to AChBP was used to test whether the docking protocol can qualitatively distinguish AChBP-binders from non-binders. Finally, we docked eight peptides with known α7 and muscle-type nAChR binding properties to test whether the protocol can explain the differential activities of the peptides at the two receptor subtypes. Overall, our docking protocol succeeded in predicting both qualitative and specific aspects of 3FTX binding to nAChR and shed light on some unknown aspects of 3FTX binding to different receptor subtypes.
Keywords: 
Subject: Biology and Life Sciences  -   Biophysics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated