This paper discovers that current variational principle and Noether theorem for different physics systems with (in)finite freedom systems have missed the double extremum processes of the general extremum functional that both is deduced by variational principle and is necessarily taken in deducing all the physics laws, but these have not been corrected for over a century since Noether's proposing her famous theorem, which result in the crisis deducing relevant mathematical laws and all physics laws. This paper discovers there is the hidden logic cycle that one assumes Euler-Lagrange equations, and then he finally deduces Euler-Lagrange equations via the equivalent relation in the whole processes in all relevant current references. This paper corrects the current key mistakes that when physics systems choose the variational extreme values, the appearing processes of the physics systems are real physics processes, otherwise, are virtual processes in all current articles, reviews and (text)books. The real physics should be after choosing the variational extreme values of physics systems, the general extremum functional of the physics systems needs to further choose the minimum absolute extremum zero of the general extremum functional, otherwise, the appearing processes of physics systems are still virtual processes. Using the double extremum processes of the general extremum functionals, the crisis and the hidden logic cycle in current variational principle and current Noether theorem are solved. Furthermore, the new mathematical and physical double extremum processes and their new mathematical pictures and physics for (in)finite freedom systems are discovered. This paper gives both general variational principle and general Noether theorem as well as their classical and quantum new physics, which would rewrite all relevant current different branches of science, as key tools of studying and processing them.
Keywords:
Subject: Physical Sciences - Mathematical Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.