Preprint
Article

Hyperbolic Rules in Genomes, the Harmonic Progression and Recurrence Sequences in Algebraic Biology

Altmetrics

Downloads

364

Views

220

Comments

0

This version is not peer-reviewed

Submitted:

14 August 2020

Posted:

19 August 2020

You are already at the latest version

Alerts
Abstract
The article is devoted to biological models using recurrence sequences, which are connected with the harmonic progression 1, 1/2, …, 1/n, and some cooperative properties of genomes. The harmonic progression is itself one of the recurrence sequences based on the harmonic mean. This progression appears in the hyperbolic rules of oligomer cooperative organization in eukaryotic and prokaryotic genomes. This allows thinking that the harmonic progression is also related to inherited physiological systems, which must be structurally consistent with the genetic coding system for their transmission to descendants and survival in evolution. The harmonic progression is one of historically known mathematical series, whose features were studied by Pythagoras, Leibniz, Newton, Euler, Fourier, Dirichlet, Riemann. It is widely used in many known algorithms and is closely related to some other important mathematical objects, for example, the function of the natural logarithm and harmonic numbers. Accordingly, the article describes the possibilities of using these interrelated mathematical objects to model biological structures, including logarithmic spirals and some other. Modeling inherited spiral configurations seems to be a particularly urgent task, since they are extremely common at all levels of organization of living bodies and, according to Goethe, are lines of life. The principle of a recurrence similarity, that is a special similarity of parts and transformations presented in recurrence sequences of numbers and matrix operators (the scale similarity and scale transformations are only particular cases of such similarity), is considered as one of the key principles of structural organization of living bodies.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated