Preprint
Article

Supersymmetry of Relativistic Hamiltonians for Arbitray Spin

Altmetrics

Downloads

164

Views

99

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

16 August 2020

Posted:

19 August 2020

You are already at the latest version

Alerts
Abstract
Hamiltonians describing the relativistic quantum dynamics of a particle with an arbitrary spin are shown to exhibit a supersymmetric structure when the even and odd elements of the Hamiltonian commute. For such supersymmetric Hamiltonians an exact Foldy-Wouthuysen transformation exits which brings it into a block-diagonal form separating the positive and negative energy subspaces. Here the supercharges transform between energy eigenstates of positive and negative energy. The relativistic dynamics of a charged particle in a magnetic field is considered for the case of a scalar (spin-zero) boson obeying the Klein-Gordan equation, a Dirac (spin one-half) fermion and a vector (spin-one) boson characterised by the Proca equation.
Keywords: 
Subject: Physical Sciences  -   Mathematical Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated