Mechanisms of the Non-Thermal Exposure Effects of Non-Ionizing Millimeter Waves Radiation on Eukaryotic Cells for Improving Technological Precision Enabling Novel Biomedical Applications
Nonionizing millimeter-waves (MMW) are reported to interact with cells in a variety of ways. Possible mechanisms of the inhibited cell division effect were investigated using 85-105 GHz MMW irradiation within the ICNIRP (International Commission on Non-Ionizing Radiation Protection) non-thermal 20 mW/cm2 safety standards. ~1.0 mW/cm2 exposureover 5-6 hours treatment on 50 cells/μl samples of Saccharomyces cerevisiae model organism, resulted in 62% growth rate reduction compared to control (sham). The effect was specific for 85-105 GHz range and energy dose and cell density dependent. Irradiation of wild type and Δrad52 (DNA damage repair gene) deletion cells presented no differences of colony growth profiles indicating non-thermal MMW treatment does not cause genetic alterations. Dose versus response relations studied using a standard horn antenna (~1.0 mW/cm2) and compared to that of a compact waveguide (17.17 mW/cm2) for increased power delivery resulted in complete termination of cell division via non-thermal processes supported by temperature rise measurements. Combinations of MMW mediated Structure Resonant Energy Transfer (SRET), membrane modulations eliciting signaling effects, and energetic resonance with biomolecules were indicated to be responsible for the observations reported. Our results provide novel mechanistic insights enabling innovative applications of nonionizing radiation procedures for eliciting targeted biomedical outcomes.
Keywords:
Subject: Biology and Life Sciences - Biophysics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.