The Molecular Interactome of the Centriole, Cell Cycle and Ciliary Proteins Modulates Cell Mass Growth and Structural Organization During Development in Metazoans
Metazoans have an elaborate and functionally segmented body. It evolves from a single cell by systematic divisions. Metazoans attain structural complexity with exquisite precision, which is a molecular mystery. The indispensable role of centrioles in cell division and ciliogenesis can shed insight into this riddle. Cell division helps in growth of the body and is a highly regulated and integrated process. Its errors cause malignancies. The cell mass is organized during organogenesis. Prior to it, the centrioles are retrieved from the cell cycle to initiate ciliogenesis. The cilia-modulated developmental signaling pathways elaborate the body plan. The secluded compartment of the cilium reduces noise during signaling and is essential for a precise body plan development. The dysfunctional centrioles and cilia can distort body plan. Thus, centriole has a dual role in growth and cellular organization. This concept review analyses the comprehensive interactome and the key domain features (like C2 domain) of molecules which connect and disarm the centriole from the cell cycle and ciliogenesis by switching on or off the essential regulators of the pathways. The concentration of these signaling pathways at the centriole reinforces the hypothesis that centriole is the molecular workstation to carve out structural design and complexity in metazoans.
Keywords:
Subject: Biology and Life Sciences - Cell and Developmental Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.