Preprint
Article

Effects of Kifunensine on Production and N-glycosylation Modification of Butyrylcholinesterase in a Transgenic Rice Cell Culture Bioreactor

Altmetrics

Downloads

410

Views

212

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

15 August 2020

Posted:

20 August 2020

You are already at the latest version

Alerts
Abstract
The production and N-glycosylation of recombinant human butyrylcholinesterase (BChE), a model highly glycosylated therapeutic protein, in a transgenic rice cell suspension culture treated with kifunensine, a strong α-mannosidase I inhibitor, was studied in a 5 L bioreactor. A media exchange was performed at day 7 of cultivation by removing spent sugar rich media (NB+S) and adding fresh sugar free (NB-S) media to induce the rice α-amylase 3D (RAmy3D) promoter to produce rice recombinant human BChE (rrBChE). Using a 1.25X concentrated sugar-free medium together with an 80% reduced working volume during the media exchange lead to a total active rrBChE production level of 79 ± 2 µg (g FW)-1 or 7.5 ± 0.4 mg L-1 in the presence of kifunensine, which is 1.5-times higher than our previous bioreactor runs using normal sugar free medium with no kifunensine treatment. Importantly, the amount of secreted active rrBChE in culture medium was enhanced in the presence of kifunensine, comprising 44% of the total active rrBChE at day 5 post-induction. Coomassie stained SDS-PAGE gel and Western blot analyses reveal different electrophoretic migration of purified rrBChE bands with and without kifunensine treatment, which is attributed to different N-glycoforms. N-Glycosylation analysis shows substantial increase of oligomannose glycans (Man5/6/7/8) in rrBChE treated with kifunensine compared to controls. However, mass transfer limitation of kifunensine is likely the major reason for incomplete inhibition of α-mannosidase I in this bioreactor study.
Keywords: 
Subject: Biology and Life Sciences  -   Biology and Biotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated