Chemistry has been viewed as one of the most fruitful near-term applications to science of quantum computing. Recent work in transitioning classical algorithms to a quantum computer has led to great strides in improving quantum algorithms and illustrating their quantum advantage. Much less effort has been placed on how one finishes these calculations by using the results from the quantum computer (on the active region of the molecule) and embeds them back into the remainder of the molecule in order to determine the properties of the entire molecule. Such strategies are critical if one wants to expand the focus to biochemical molecules that contain active regions that cannot be properly explained with classical algorithms on classical computers. While we do not solve this problem here, we provide an overview of where the field is going to enable such problems to be tackled in the future.
Keywords:
Subject: Biology and Life Sciences - Biophysics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.