Preprint
Article

Antiviral phytochemicals identified in Rhododendron arboreum petals exhibited strong binding to SARS-CoV-2 MPro and Human ACE2 receptor

Altmetrics

Downloads

824

Views

1069

Comments

0

Submitted:

19 August 2020

Posted:

24 August 2020

You are already at the latest version

Alerts
Abstract
Background: Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) affects human respiratory function causing COVID-19 disease. Safe natural products with potential antiviral phytochemicals with benefits to control high-altitude sickness could be adopted as adjunct therapy for COVID-19. The red petals of Rhododendron arboreum, commonly available and consumed in the Himalayan region may have phytochemicals with potential antiviral properties against COVID-19 targets.Purpose: This study was aimed to profile the secondary metabolites of R. arboreum petals, to assess their absorption, distribution, metabolism and elimination (ADME) properties and evaluate their antiviral potential by docking against COVID-19 targets such as SARS-CoV-2 main protease (Mpro PDB ID: 6LU7) and Human Angiotensin Converting Enzyme 2 (ACE2) receptor (PDB ID: 1R4L) that mediates the viral replication and entry into the host respectively.Methods: The phytochemicals of R. arboreum petals were mainly profiled using Gas Chromatography-Mass Spectroscopy (GC-MS) and 1H-NMR. In addition, the phytochemicals reported from the literature were tabulated. The ADME properties of the phytochemicals were predicted using SwissADME tool. Molecular docking simulation of the phytochemicals against SARS-CoV-2 main protease (Mpro PDB ID: 6LU7) and Human Angiotensin converting enzyme 2 (ACE2) receptor (PDB ID: 1R4L) were carried out using PyRx.Results: R. arboreum petals were found to be rich in appreciable proportions of secondary metabolites such as Quinic acid, 3-Caffeoyl-quinic acid, 5-O-Coumaroyl-D-quinic acid, 5-O-Feruloylquinic acid, 2,4-Quinolinediamine, Coumaric acid, Caffeic acid, Epicatechin, Catechin, 3-Hydroxybenzoic acid, Shikimic acid, Protocatechuic acid, Epicatechin gallate, Quercetin, Quercetin-O-pentoside, Quercetin-O-rhamnoside, Kaempferol-O-pentoside and Kaempferol. Several of these phytochemicals were reported to exhibit inhibitory activities against a range of viruses. From the molecular docking studies, 5-O-Feruloylquinic acid, 3-Caffeoyl-quinic acid, 5-O-Coumaroyl-D-quinic acid, Epicatechin and Catechin showed strong binding affinity with SARS-CoV-2 Mpro and human ACE2 receptor.Conclusion: This report showed that R. arboreum petals are rich in several antiviral phytochemicals that also docked against SARS-CoV-2 MPro and Human ACE2 receptor. This is the first report highlighting R. arboreum petals as a reservoir of antiviral phytochemicals with potential for synergetic activities. The outcomes merit further in vitro, in vivo and clinical studies on R. arboreum phytochemicals to develop natural formulations against COVID-19 disease for therapeutic benefits.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated