Preprint
Article

Defect Depth Estimation in Infrared Thermography with Deep Learning

Altmetrics

Downloads

281

Views

274

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

25 August 2020

Posted:

26 August 2020

You are already at the latest version

Alerts
Abstract
Infrared thermography has already been proven to be a significant method in non-destructive evaluation since it gives information with immediacy, rapidity and low cost. However, the thorniest issue for wider application of IRT is the quantification. In this work, we proposed a specific depth quantifying technique by employing the Gated Recurrent Units (GRU) in composite material samples via pulsed thermography (PT). Carbon Fiber Reinforced Polymer(CFRP) embedded with flat bottom holes were designed via Finite Element Method (FEM) modeling in order to precisely control the depth and geometrics of the defects. The GRU model automatically quantified the depth of defects presented in the CFRP material. The proposed method evaluated the accuracy and performance of synthetic CFRP data from FEM for defect depth predictions.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated