Preprint
Article

Precise Catalyst Production for Carbon Nanotube Synthesis with Targeted Structure Enrichment

This version is not peer-reviewed.

Submitted:

29 August 2020

Posted:

30 August 2020

Read the latest preprint version here

A peer-reviewed article of this preprint also exists.

Abstract
The direct growth of single-walled carbon nanotubes (SWCNTs) with a narrow distribution of diameter or chirality remains elusive despite significant benefits in properties and applications. Nanoparticle catalysts are vital for SWCNT synthesis, but how to precisely manipulate their chemistry, size, concentration, and deposition remains difficult, especially within a continuous production process from the gas-phase. Here, we demonstrate the preparation of W6Co7 alloyed nanoparticle catalysts with precisely tunable stoichiometry using electrospray, which remain solid state during SWCNT growth. We also demonstrate continuous production of liquid iron nanoparticles with in-line size selection. With the precise size manipulation of catalysts in the range of 1-5 nm, and a nearly monodisperse distribution (σ_g < 1.2), an excellent size selection of SWCNT can be achieved. All of the presented techniques show great potential to facilitate the realization of single-chirality SWCNT production.
Keywords: 
Subject: 
Chemistry and Materials Science  -   Nanotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated