Preprint
Article

Research and Implementation of Hybrid Intelligent Wargame Based on Prior Knowledge-DQN Algorithm

Altmetrics

Downloads

330

Views

189

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

28 August 2020

Posted:

31 August 2020

You are already at the latest version

Alerts
Abstract
The reinforcement learning problem of complex action control in the Multi-player wargame is a hot research topic in recent years. In this paper , a game system based on turn-based confrontation is designed and implemented with the state-of-the-art deep reinforcement learning models. Specifically, we first design a Q-learning algorithm to achieve intelligent decision-making, which is based the DQN(Deep Q Network) to model the complex game behaviors. Then, a priori- knowledge based algorithm PK-DQN(Prior Knowledge- Deep Q Network) is introduced to improve the DQN algorithm, which accelerates the convergence speed and stability of the algorithm. The experiments demonstrate, the correctness of the PK-DQN algorithm is validated and its performance surpass the conventional DQN algorithm. Furthermore, the PK-DQN algorithm shows effectiveness in defeating the high level of rule-based opponents, which provides promising results for the exploration of the field of smart chess and intelligent game deduction.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated