By partly generalizing the Lipschitz condition of existing results to the generalized Lipschitz one, the author utilizes a fixed point theorem, variational method and Lyapunov function method to derive the unique existence of globally asymptotical input-to-state stability of positive stationary solution for Gilpin-Ayala competition model with diffusion and delayed feedback under Dirichlet zero boundary value. Remarkably, it is the first paper to derive the unique existence of the stationary solution of reaction-diffusion Gilpin-Ayala competition model, which is globally asymptotical input-to-state stability. And numerical examples illuminate the effectiveness and feasibility of the proposed methods.