Preprint
Review

Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions

Altmetrics

Downloads

554

Views

391

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

02 September 2020

Posted:

03 September 2020

You are already at the latest version

Alerts
Abstract
Machine learning (ML) is penetrating in all walks of life and is one of the major driving forces behind the fourth industrial revolution, typically known as Industry 4.0. This study reviews the state-of-the-art ML applications in the biofuels’ life cycle stages, i.e., soil, feedstock, production, consumption, and emissions. A keyword search is performed to retrieve relevant articles from the databases of the Web of Science and Google Scholar. ML applications in the soil stage were mostly based on the use of satellite images of land for estimation of biofuels yield or suitability analysis of agricultural land. In the second stage of the life cycle, assessment of rheological properties of the feedstocks and their effect on the quality of biofuels were dominant studies reported in the literature. The production stage included estimation and optimization of quality, quantity, and process conditions. The fuel consumption and emissions stage included analysis of engine performance and estimation of emissions temperature and composition, such as NOx, CO, and CO2. This study identified the following trends: dominant ML method, the stage of life cycle getting more usage of ML, the type of data used for the development of the ML-based models, and the stage-wise frequently used input and output variables. The findings of this article are beneficial for academia and industry-related people involved in model development in different stages of biofuel’s life cycle.
Keywords: 
Subject: Engineering  -   Energy and Fuel Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated