Abstract
Forest fires are part of a set of natural disasters that have always affected regions of the world typically characterized by a tropical climate with long periods of drought. However, due to climate change in recent years, other regions of our planet have also been affected by this phenomenon, never seen before. One of them is certainly the Italian peninsula, and especially the regions of southern Italy. For this reason, the scientific community, as well as remote sensing one, is highly concerned in developing reliable techniques to provide useful support to the competent authorities. In particular, three specific tasks have been carried out in this work: (i) fire risk prevention, (ii) active fire detection, and (iii) post-fire area assessment. To accomplish these analyses, the capability of a set of spectral indices, derived from spaceborne remote sensing (RS) data, is assessed to monitor the forest fires. The spectral indices are obtained from Sentinel-2 multispectral images of the European Space Agency (ESA), which are free of charge and openly accessible. Moreover, the twin Sentinel-2 sensors allow to overcome some restrictions on time delivery and observation repeat time. The performance of the proposed analyses were assessed experimentally to monitor the forest fires occurred in two specific study areas during the summer of 2017: the volcano Vesuvius, near Naples, and the Lattari mountains, near Sorrento (both in Campania, Italy).