Preprint
Technical Note

Prediction of Lung Function in Adolescence Using Epigenetic Aging: A Machine Learning Approach

Altmetrics

Downloads

196

Views

168

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

06 September 2020

Posted:

08 September 2020

You are already at the latest version

Alerts
Abstract
Epigenetic aging has been found associated with a number of phenotypes and diseases. Few studies investigated its effect on lung function in relatively older people. However, this effect has not been explored in younger population. This study examines whether lung function at adolescent can be predicted with epigenetic age accelerations (AAs) using machine learning techniques. DNA methylation based AAs were estimated in 326 matched samples at two time points (at 10 years and 18 years) from the Isle of Wight Birth Cohort. Five machine learning regression models (linear, lasso, ridge, elastic net, and Bayesian ridge) were used to predict FEV1 (Forced Expiratory Volume in one second) and FVC (Forced Vital Capacity) at 18 years from feature selected predictor variables (based on mutual information) and AA changes between the two time points. The best models were ridge regression (R2 = 75.21% ± 7.42%; RMSE = 0.3768 ± 0.0653) and elastic net regression (R2 = 75.38% ± 6.98%; RMSE = 0.445 ± 0.069) for FEV1 and FVC, respectively. This study suggests that the application of machine learning in conjunction with tracking changes in AA over life span can be beneficial to assess the lung health in adolescence.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated