Preprint
Article

Direct Binding of Complementary Symmetric Ligands to DNA Nucleotide Pairs by Means of Transcription Factors

Altmetrics

Downloads

263

Views

192

Comments

0

This version is not peer-reviewed

Submitted:

12 September 2020

Posted:

14 September 2020

You are already at the latest version

Alerts
Abstract
To activate gene expression, the initiation of transcription is a highly regulated process involving the interaction of proteins and DNA nucleotides at the promoter site, which consists of a small number of base pairs. As it involves interactions at the atomic scale, it is challenging to determine the mechanism of binding responsible for the great specificity between the amino acid residuals comprising the transcription binding protein and the DNA nucleotides comprising the promoter. Here, a new approach to characterize the transcription initiation process is developed and verified from analysis of comparative pharmacological efficacy data and elemental modeling. The newly developed description of a mechanism for transcription initiation involves the direct binding of small molecule ligands of approximately twenty carbon atoms, which are both structurally symmetric to DNA nucleotides, and also chemically complementary in its functional groups for interaction with the oxygen element at the carbon two position of thymine and with the phosphodiester chain. The results indicate that the activating ligands are transported to the DNA nucleotide promoter site by protein transcription factors, which serve as delivery vectors, for transfer of the ligand to the DNA nucleotide pairs. The ligands examined in this study include the steroid hormones, synthetic steroid molecules, derivatives of vitamin D, and prostaglandins, particularly PGJ2 and 15d-PGJ2. The transcription factors evaluated include glucocorticoid receptors, VDR, PPAR, and TBP. Through the developments, it is shown that because of the chemically complementary binding of the ligand to DNA nucleotide pairs, the resultant intermolecular complex produces three hydrogen bonds for the A-T and T-A configurations, which matches that of G-C and C-G. The orientation of the nucleotide base pairs is also seen to adjust as an inversion of the nominal position of the nucleobases to a dimer configuration presented via TBP transcription factor. The developments comprise a new approach to characterizing the initiation of the transcription process comprising the direct binding and interaction of ligands with DNA nucleotides as verified through comparative analysis of pharmacological activity and through perfect structural correspondence between the steroid hormone class as ligands with Watson-Crick DNA nucleotide pairings.
Keywords: 
Subject: Chemistry and Materials Science  -   Physical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated