In this manuscript, we present a high-fidelity physics-based truth model of a Single Machine Infinite Bus (SMIB) system. We also present reduced-order control-oriented nonlinear and linear models of a synchronous generator-turbine system connected to a power grid. The reduced-order control-oriented models are next used to design various control strategies such as: proportional-integral-derivative (PID), linear-quadratic regulator (LQR), pole placement-based state feedback, observer-based output feedback, loop transfer recovery (LTR)-based linear-quadratic-Gaussian (LQG), and nonlinear feedback-linearizing control for the SMIB system. The controllers developed are then validated on the high-fidelity physics-based truth model of the SMIB system. Finally, a comparison is made of the performance of the controllers at different operating points of the SMIB system.
Keywords:
Subject: Engineering - Control and Systems Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.