Preprint
Article

New Developments in Understanding Harper-Dorn, Five- power Law Creep and Power-law Breakdown

Altmetrics

Downloads

346

Views

141

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

14 September 2020

Posted:

16 September 2020

You are already at the latest version

Alerts
Abstract
This paper discusses recent developments in creep, over a wide range of temperature, that mqy change our understanding of creep. The five-power law creep exponent (3.5 to 7) has never been explained in fundamental terms. The best the scientific community has done is to develop a natural three power-law creep equation that falls short of rationalizing the higher stress exponents that are typically five. This inability has persisted for many decades. Computational work examining the stress-dependence of the climb rate of edge dislocations we may rationalize the phenomenological creep equations. Harper-Dorn creep, “discovered” over 60 years ago has been immersed in controversy. Some investigators have insisted that a stress exponent of one is reasonable. Others believe that the observation of a stress exponent of one is a consequence of dislocation network frustration. Others believe the stress exponent is artificial due to the inclusion of restoration mechanisms such as dynamic recrystallization or grain growth that is not of any consequence in the five power-law regime. Also, the experiments in the Harper-Dorn regime, which accumulate strain very slowly (sometimes over a year) may not have attained a true steady state. New theories suggest that absence or presence of Harper-Dorn may be a consequence of the initial dislocation density. Novel experimental work suggests that power-law breakdown may be a consequence of a supersaturation of vacancies which increase self-diffusion.
Keywords: 
Subject: Chemistry and Materials Science  -   Metals, Alloys and Metallurgy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated